Residual Stress Measurement by X-Ray Diffraction — SAE J784a

Report of Iron and Steel Technical Committee approved September 1960 and last revised by Fatigue Design and Evaluation Committee August 1971.

> SAE Information Report First edition published September 1960 Second printing January 1964 Second edition published August 1971

> > **Published by:**

SOCIETY OF AUTOMOTIVE ENGINEERS, INC. Two Pennsylvania Plaza, N.Y., N.Y. 10001

EDITORIAL COMMITTEE

M. E. Hilley, editor J. A. Larson, associate editor C. F. Jatczak, associate editor R. E. Ricklefs, assistant editor University of South Florida Ford Motor Co. The Timken Company Caterpillar Tractor Co.

Prepared by the X-Ray Division of the SAE Fatigue Design and Evaluation Committee N. M. Walter, chairman

© SOCIETY OF AUTOMOTIVE ENGINEERS, INC. 1971.

SAE Technical Board Rules and Regulations

All technical reports, including standards approved and practices recommended, are advisory only. Their use by anyone engaged in industry or trade is entirely voluntary. There is no agreement to adhere to any SAE Standard or SAE Recommended Practice, and no commitment to conform to or be guided by any technical report. In formulating and approving technical reports, the Technical Board, its Councils and Committees will not investigate or consider patents which may apply to the subject matter. Prospective users of the report are responsible for protecting themselves against liability for infringement of patents.

Printed in U.S.A.

TABLE OF CONTENTS

PART A - Principles and Methods of Analysis 1		
SECTION 1 - Re	esidual Stresses: Types and Sources	3
1.1	Introduction	3
1.2	Sources of Residual Stresses	3
1.2.1	Mechanical Processes	4
1.2.2	Thermal Processes	5
1.2.3	Chemical Processes	10
1.2.4	Combination Processes	10
1.3	References	11
SECTION 2 - Principles of Residual Stress Measurements		
21	Flemental Stress Relationships	12
2.1	Stress-Strain Relations	12
2.2	Delation of Strain Equation to V Day Straas Analysis	12
2.5	Stress Equation of Diffraction Anala	15
2.4	Stress Equation as Function of Diffraction Angle	15
2.5	Stress Equation as Function of $\sin^2\psi$	16
SECTION 3 - Equ	uipment and Methods of Analysis	17
3.1	Introduction	17
3.2	Description of Diffractometer Equipment and Methods	17
3.3	Diffractometer Residual Stress Techniques	19
3.3.1	Two-Exposure Technique	19
3.3.2	Multi-Exposure or $\sin^2\psi$ Technique	20
3.4	Film Techniques	20
3.5	Portable Diffractometer Technique	24
3.6	Parallel Beam Diffractometer Technique	24
SECTION 4 - Sel	ection of Radiation, Reflections, and Filters	26
4.1	Radiation and Peak Combinations	26
4.2	Filter Criteria	26
4.3	References	28
SECTION 5 - Specimen Preparation 29		
5 1	Effect of Surface Conditions	29
5.1	Matarial Parroyal	29
5.2	Fastara Affastina Minimum Sussimon Sine	29 21
5.5	Factors Affecting Minimum Specifien and V Day Techniques	31
5.4	Combination Strain-Gage Dissection and X-Kay Techniques	31
5.5	References	31
SECTION 6 - Con	ntrol of Instrumental Factors	32
6.1	Alignment	32
6.1.1	Alignment Terminology and General Requirements	32
6.1.2	Alignment of Optics	32
6.1.3	Determination of the Center of Rotation	34
6.1.4	Alignment of Radial Slide	35
6.1.5	Determination of True Zero	35
6.2	Selection of Slit Size and Collimation	36
6.3	Required Corrections to Raw Diffractometer Intensity Data	38
6.3.1	Correction for Factors Dependent on θ and ψ	38
6.3.2	Corrections for Background	39
6.3.3	Corrections for Deviations From True Focusing Conditions	39
6.4	Determination of Elastic Constants	45
6.4.1	The Stress Factor, K	45